
The New Apple II User’s Guide
David Finnigan

All text, photographs, and illustrations are
copyright 2012 by David Finnigan. All rights reserved.

No part of this book may be reproduced or redistributed
in any form or by any electronic or mechanical means,
including information storage and retrieval systems,

without permission in writing from the author, except
by a reviewer who may quote brief passages in a review.
The computer program listings may be entered, stored,

and executed in a computer system, but only for
personal use.

ISBN-10: 0615639879

ISBN-13: 978-0-615-63987-1

This book was prepared using Adobe software products
on Macintosh computers. The display face is Futura.

Text is in Bookman Old Style.

Published by Mac GUI

Chapter 3 : Beginning BASIC

This chapter will teach you the basics of programming, starting off
with a few fundamental ideas. You will then learn about the two
different types of BASIC on the Apple and how to distinguish
them. The rest of the chapter will then be devoted to learning
enough commands to make a simple, yet functional BASIC pro-
gram.

If you wish to learn BASIC, it is imperative that you follow along
with the examples in this book, and then experiment on your own.
You cannot learn a programming language by just reading and
memorizing; you must practice it too.

About BASIC

If you’re interested in programming your Apple, then BASIC is
likely the first language that you’ll use. It comes built into every
Apple computer. BASIC stands for Beginner’s All-purpose Sym-

65

bolic Instruction Code and was developed at Dartmouth University
in the 1960s. Using English words, BASIC is easy to learn, even
by those with no previous programming experience.

If you’re used to other high-level languages such as C, Java, or
Pascal, then you’ll find that BASIC is quite a bit different. It is not
a structured language. Instead, BASIC uses line numbers to sepa-
rate program statements.

Programs, Statements, and Commands

In case you are new to programming computers, there are a few
basic terms to learn first. What you will be doing in this chapter is
writing what is known as a computer program. A program is a set
of instructions which are followed exactly by the computer to
carry out a task. The shortest program consists of just one in-
struction, but as you might guess, it wouldn’t be very useful. The
longest programs for the Apple contain many thousands of in-
structions.

Taken by themselves, these instructions are formally known as
statements. An example of a statement is one which multiplies two
numbers and stores the result. A further statement could then
print the stored product on the screen. A statement makes up just
a small part of a program, but if even one critical statement is
wrong or missing, the program will not perform as desired.

A statement usually includes a command, an operation for the
computer to perform. In BASIC, a command is always a single
English word or abbreviation. Take, for example, a command to
display a number that was stored earlier. By itself, this command
is not a statement, since it is missing a critical component: the
number to be displayed. It has no meaning otherwise. Once these
pieces are brought together, the command becomes part of a
meaningful statement.

Syntax

Just like human languages such as English and French have
rules of grammar which should be followed, so too do computer

The New Apple II User’s Guide

66

languages have such a grammar, known as syntax. The main dif-
ference is that if you make a small mistake while speaking a lan-
guage, odds are that the other person will be able to compensate
and still understand what you mean. The Apple can do no such
thing. To a computer, there are only two results: right and wrong.
Either you have entered a command correctly, or you have not.

Fortunately for you, BASIC is based on commands which are
common English words or abbreviations. Therefore, with the ex-
ception of typographical errors, you should have little or no trou-
ble with syntax errors after you have had some practice.

The Two BASICs

In the course of the Apple II’s life, two major versions of BASIC
were released. The first, available on the original model of Apple II,
is known as Integer BASIC. If you recall from Chapter 1, its
prompt is a > character. Integer BASIC was written by Steve
Wozniak mostly for gaming purposes, but is not limited to just
games. As a result of it only handling integer (whole) numbers, it
is quite speedy. Starting with the Apple II Plus, Integer BASIC no
longer came built-in as a standard option. Therefore, Integer BA-
SIC is less commonly used.

The other version of BASIC is known as Applesoft. It is somewhat
slower than Integer BASIC, but has more features, such as sup-
port for floating point (decimal) numbers, and high-resolution
graphics. These features make it suited to many scientific, busi-
ness, and mathematical applications. Applesoft is built in to the
Apple II Plus and all later models and is far more common than
Integer BASIC. It is available as an option on the original model of
Apple II. The Applesoft prompt character is a] symbol.

Differences between the two versions of BASIC will be pointed out
where they exist. In the absence of such documentation, one may
assume that the two BASICs behave identically.

Chapter 3 : Beginning BASIC

67

Getting into BASIC

Before you can start telling your Apple what to do in the BASIC
language, you need to get into the BASIC mode. The process to do
so varies by type of Apple. First, if any disk drives are connected
to your Apple, make sure that there aren’t any disks in them, and
turn on your monitor (or television) and Apple II. While first learn-
ing BASIC, you won’t be using the Apple disk system.

If you have an original model Apple II which starts in the Monitor,
press CONTROL-B and then RETURN to enter Integer BASIC. As soon
as you press RETURN, a > prompt will appear.

For all other models of Apple II, press CONTROL-RESET to enter Ap-
plesoft BASIC. The] prompt will appear.

All examples shown will use the square bracket prompt of Apple-
soft BASIC, unless the information applies only to Integer BASIC,
in which case the angle bracket will be shown.

Switching to Integer BASIC

To switch from Applesoft to Integer BASIC, type INT, followed by
RETURN. The Applesoft prompt will be replaced with the Integer
BASIC greater-than bracket (>). Integer BASIC must be available
on your model of Apple in one of three ways:

• Built-in to the motherboard ROMs
• Located on an Apple Firmware (ROM) card
• Loaded from DOS 3.3 to an Apple Language Card.

The first method is only available on the original model of Apple II.
The second method is restricted to the Apple II Plus. Finally, the
third method, using a Language Card, can be used with any
model of Apple. Integer BASIC cannot be used with ProDOS on
any model of Apple. See Chapter 7 for an explanation of DOS 3.3
and ProDOS.

Use the FP command (which is short for floating point) to return
to Applesoft.

The New Apple II User’s Guide

68

Upper Versus Lowercase

Unfortunately, there can be quite a bit of confusion for the new
Apple II user as whether to use uppercase or lowercase letters
when typing commands.

This problem arose in 1983, with the introduction of the Apple IIe.
Before then, the two earlier models of Apple, the II and II Plus,
had keyboards which could only type capital letters. The SHIFT key
existed only to produce the upper symbol on a key cap with two
symbols, such as the P key, or the number keys. There was abso-
lutely no way to get lowercase letters without performing a hard-
ware modification to the computer. Therefore, the vast majority of
software operated in, and expected commands in, uppercase only.

Then everything changed when the Apple IIe was released. It was
the first model of Apple to have a built-in keyboard capable of typ-
ing both lower and uppercase letters on screen. However, the gen-
eration of software written before it expected only uppercase
commands. Even the BASIC included with the original model of
Apple IIe expected commands to be in uppercase. Therefore, the
user of the Apple IIe typically operated it with the CAPS LOCK key
depressed.

Later on, when further models of Apple were introduced, lower-
case became standard, and thus more common. The built-in BA-
SIC in the later revisions of Apple IIe, as well as all revisions of the
IIc, IIc Plus, and IIgs, can accept commands in either upper or
lowercase. To summarize, the only model of Apple whose keyboard
can generate lowercase letters, but whose BASIC only accepts up-
percase is the standard, unenhanced Apple IIe.

To make things simpler for all models of Apple, this book will
show examples in uppercase only. It is recommended that users of
an unenhanced Apple IIe make sure that the CAPS LOCK key is de-
pressed.

Chapter 3 : Beginning BASIC

69

Your First BASIC Command

Now it’s time to learn and type your first BASIC command. If you
have an unenhanced Apple IIe (that prints “Apple][” at startup),
be sure that the CAPS LOCK key is depressed. Now, type:

]NEW

and press RETURN. Remember that either the angle bracket (>) or
square bracket (]) is provided on screen for you; do not type it
yourself. The bracket is merely shown in these examples to illus-
trate what the final screen line should look like. If everything went
correctly, it should appear as if nothing happened. The Apple will
print another prompt and flash the cursor at you.

However, something in fact did happen. The command NEW tells
the Apple that you intend to start a new BASIC program. If any
BASIC program was already in memory, it will be discarded. The
Apple can only have one BASIC program in its RAM (memory) at a
time. If you forgot to type NEW, and an old program was already
in memory, your new program could get mixed in with the old one.
Since there wasn’t already a program in the Apple this time, typ-
ing NEW here was a mere formality, but it’s a good habit to get
into.

Errors

The Apple is not shy when it comes to telling if you’ve done some-
thing that it cannot understand. If you enter a command and the
Apple beeps and shows either:

*** SYNTAX ERR! (Integer BASIC)

or

?SYNTAX ERROR! (Applesoft)

on the screen, then it means that you entered something which
the Apple couldn’t comprehend, known as making a syntax error.
If you’ve been experimenting on your own, then you have probably

The New Apple II User’s Guide

70

already received this error message. BASIC on the Apple only un-
derstands a limited, predefined set of words. It will not recognize
any synonyms or other command words. Once you’ve learned the
BASIC commands and functions, the most likely cause of a syntax
error is a typing mistake. Simply retype the line and try again.

On the other hand, if you make a logic error, the Apple will never
notice. It can only detect syntax errors. As an example, if you
mean to multiply two numbers but type an addition sign instead
of multiplication, it is up to you to detect and correct this mistake.

Printing Text on Screen

If you weren’t too impressed with your first command, this next
one should be better: it at least has visible results! One of the
most common ways that computers communicate with humans is
to display text, whether it be the results of a calculation, or a
prompt to enter in some data, or merely instruction on how to use
the program.

In the case of BASIC, the command to display something on the
screen is called PRINT. The name of this command is a throwback
from the old days when computers would display output on an
actual line-printer or teletype, instead of a display screen.

To try out your first PRINT command, type the following:

]PRINT "HELLO, WORLD!"

and press RETURN. The Apple should respond by displaying the
phrase “HELLO, WORLD!” on the screen (without the quotes). If
not, check your typing and reenter the line (remember that you
don’t need to type the] symbol).

Congratulations, you’ve just written your first line of BASIC! No-
tice that only the text in between the quotes is displayed. The
quotes themselves are not part of the subsequent output.

Now enter this line:

]10 PRINT "HELLO, WORLD!"

Chapter 3 : Beginning BASIC

71

When you press RETURN, the Apple won’t print anything on the
screen. What happened? Here’s what this line, or statement,
means. To begin, it has two parts: a line number, and a command.

The line number in this example is 10. All BASIC programs must
have line numbers, which can range from 0 to 32767 in Integer
BASIC, and 0 to 63999 in Applesoft. The Apple will run a program
from the lowest line number to the highest, unless told otherwise
by a command.

You may be wondering about the first two commands you entered,
NEW and PRINT, both of which did not have a line number. This
leads us to the next part.

Immediate Versus Deferred Execution

When you typed the NEW command, the Apple II instantly exe-
cuted it by clearing out any existing program. In other words, the
command was executed immediately. Likewise, with the first
PRINT statement, the line was executed as soon as you pressed
RETURN. This is called immediate execution.

However, when you typed the line 10 PRINT "HELLO, WORLD" the
Apple did not actually execute that command. Instead, the com-
puter saved it in memory, allowing you to execute it and any other
commands you entered at a later time. This is an example of de-
ferred execution: storing a set of statements (also known as a pro-
gram) to be executed later. Every proper BASIC program is made
up of one or more numbered lines of deferred execution com-
mands. Sometimes you will see the term “programmed mode”
used in place of “deferred execution”; they mean the same thing.

In many cases, BASIC commands can be used in both the imme-
diate and deferred execution modes. The PRINT command is one
example. Other commands do not make sense if used in the oppo-
site mode, and the Apple will not allow them.

The New Apple II User’s Guide

72

The Rest of the PRINT Command

Now, let’s take a look at the final two parts of the PRINT command
which you just entered.

After the line number comes the actual command itself. In this
case, it’s PRINT, telling the Apple to display some information.
How does it know what to display? Well, the third and final part of
the statement is the answer. The argument to the command is
“HELLO, WORLD!” The Apple takes everything between the quota-
tion marks and displays it on the screen when this command is
executed.

What happens when you type a PRINT command with no argu-
ment? Try it. The Apple just prints a blank line.

Printing Numbers and Calculations

The PRINT command can do more than just write text onto the
screen. It can also display numerals and mathematical expres-
sions, such as in the following examples:

]PRINT 10 - 3

7

]PRINT 2*8

16

]PRINT -115 + 200

85

]PRINT 64/2

32

]PRINT "12*6"

12*6

Pay close attention to the last line. If you type an expression in
quotation marks, the Apple does not evaluate it. Instead, it just

Chapter 3 : Beginning BASIC

73

prints it as if it were any other ordinary text. You must remember
this distinction, unless you really do want to print an expression
and not the results of it.

In every other case, the Apple prints the results of the mathemati-
cal expression on the next line. However, there are some limita-
tions to what the Apple can compute in BASIC mode.

Integer BASIC supports a numerical range of -32767 to +32767.
Therefore, attempting a calculation such as the following will re-
sult in an error:

>PRINT 32767+1

*** >32767 ERR

>PRINT 5/0

*** >32767 ERR

As its name suggests, Integer BASIC cannot deal with non-integral
numbers (decimal numbers having a fractional part, such as 2.5).
The following examples illustrate this limitation:

>PRINT 5/2

2

>PRINT 1 + 0.5

*** SYNTAX ERR

In the first case, the Apple discards the remainder instead of dis-
playing the true value of 2.5. The number is not rounded. In the
second case, Integer BASIC cannot accept decimals, so the entire
line is rejected as having a syntax error.

Applesoft does not deal with fractions such as 1/4, but it can
work with the decimal equivalent, such as 0.25. Furthermore, it is
limited to a total of nine significant digits in all fractional numbers
which it displays. This includes all significant digits after the
decimal point, and not just the whole number part.

]PRINT 3.141592653589793

3.14159266

The New Apple II User’s Guide

74

Despite this limitation, Applesoft is superior to Integer BASIC in
that it can handle numbers of much greater magnitude than
32,767.

]PRINT 3.141 * (500 ^ 2)

785250.002

]PRINT 785250.002 ^ 3

4.84198945E+17

Applesoft represents large numbers using scientific notation, as
shown in the previous example. In case you are unfamiliar with
this form of notation, one simply takes the value after the E
(known as the exponent) and moves the decimal point by that
many places. A positive number means that the decimal point is
to be moved to the right, whereas a negative number dictates that
the decimal point be moved to the left.

Thus, 4.84198945E+17 is written in standard form notation as
484,198,945,000,000,000.

The range for exponents is E-38 to E+38.

Combining Calculations and Characters

If you would like a PRINT line to show both characters, such as
some text, as well as a calculation, you may separate the two us-
ing a semicolon, like so:

]PRINT 365-120;" DAYS LEFT IN THE YEAR"

245 DAYS LEFT IN THE YEAR

You can append many more characters and calculations to a sin-
gle line. Remember that letters and numbers which should be
displayed literally (“as-is”) must be placed within quotation marks.

]PRINT "I AM ";365*28;" DAYS OLD AND ";6

*12;" INCHES TALL."

I AM 10220 DAYS OLD AND 72 INCHES TALL.

Chapter 3 : Beginning BASIC

75

In Applesoft, using the semicolon to join parts in a PRINT state-
ment is optional.

A Shorter PRINT Command

Applesoft has a convenient shortcut for PRINT, a command that
gets used fairly often. If you want to cut down on the amount of
typing you do, you’ll appreciate this alternative. Anywhere you
want to type the PRINT command, type a single question mark (?)
instead. You’ll save four letters of typing. Here are a few examples
of its usage:

]?"VENI, VEDI, VICI"

VENI, VEDI, VICI

]?10*24

240

The question mark syntax can be used in both deferred and im-
mediate mode execution. When you LIST your program (this
command will be explained shortly), the question mark will be
converted to a PRINT command.

Finishing the Program with END

Now that you have a one-line program, it is time to finish it off
with a final line. The END command is required in Integer BASIC,
but is optional in Applesoft. Whenever the Apple encounters END,
it stops running your program and returns to the BASIC prompt.

To add an END command to your first program, type

]20 END

and press RETURN. You now have a simple, yet complete BASIC
program.

If you don’t put an END command in your program, then Apple-
soft will stop when it runs out of lines to execute. Integer BASIC

The New Apple II User’s Guide

76

will also stop under the same condition, but it will also return a
*** NO END ERR message.

Running Your Program

So far you have a program with two lines of instructions. Can you
guess what command to enter to run it and see the results?

Type

]RUN

and press RETURN. By now, you should realize that every line typed
on the Apple must be completed with a tap of the RETURN key. In
future, this direction will not be explicitly given. If the Apple does
not appear to be responding to your command, perhaps you have
forgotten to press RETURN!

If all went well, your efforts will be rewarded with the line “HELLO,
WORLD!” and another command prompt. You can type RUN again
if you wish, and the Apple will execute the program once more.
The Apple II won’t ever get tired of running your program over and
over.

If nothing happens, it may be that you did not type in line 10 from
a few sections ago, or that you typed NEW at some point, thus
obliterating it. To recover, type the entire program again:

10 PRINT "HELLO, WORLD!"

20 END

And then RUN it again:

]RUN

HELLO, WORLD!

]

Chapter 3 : Beginning BASIC

77

Examining the Program

By now, there is likely a whole mess of program lines and output
lines on your screen. To make matters worse, some of the program
lines could have changed from what is shown on the screen if you
retyped them. The solution is to ask the Apple to print the current
program listing. The command to do so is called LIST. Try it now to
see what your program looks like:

]LIST

The LIST command always prints what the program currently
looks like, and always in ascending line order. Even if one were to
type line 20 first, then line 10, internally, the Apple rearranges
those lines in correct order. The LIST command always reflects the
proper order.

Often times, a program will contain more lines than may be shown
on the screen at one time. The LIST command can accept some
arguments to limit its output and solve this problem.

To list just one line, type LIST and the desired line number, as
demonstrated:

]LIST 10

To list a sequential range of lines, separate the starting and end-
ing line numbers with a comma as in this example:

]LIST 10,20

In Applesoft, two additional listing modes are available.

To list all lines starting from the beginning up to a certain line
number, type a comma, then the final line number. The Apple will
list all program lines up to and including the line number that you
entered.

]LIST ,20

This list mode may be simulated in Integer BASIC by typing a zero
before the comma.

The New Apple II User’s Guide

78

Finally, to list all lines after a certain line number, type the line
number, then a comma. The Apple will start the listing with the
line number that you entered, and stop with the last program line.

]LIST 10,

In Applesoft, a hyphen (-) may be used in place of a comma in the
LIST command. It has the same effect.

Sometimes you may want to abort the listing of a rather long pro-
gram. To do so in Applesoft, press CONTROL-C. The one drawback
to this method is that there is no easy way to immediately con-
tinue listing the program from where it was stopped. Integer BA-
SIC does not have a way to abort the program listing.

You may find that the earlier lines in a long program pass by too
quickly for you to read. Fortunately, the Apple II Plus and all later
models support a listing pause feature. To pause the output of a
program listing, press CONTROL-S. The Apple will wait for as long
as you need to read the lines on the screen. When you’re ready for
the rest of the program listing, press any key, such as the SPACE

BAR (or CONTROL-S again) to resume.

Modifying the Program

Let’s say that you want the program to print something different.
How about your name? To revise the program, you can either
change existing lines, add more lines, or delete lines.

Changing Lines

To change a line, merely retype the entire line. Alternatively, if the
line is especially long, you could make good use of the Escape key
sequences covered near the end of Chapter 2 to correct it.

In this case, let’s have the Apple print your name. Type line num-
ber 10, a quotation mark, your name, and a final quotation mark.
The line in my program looks like:

]10 PRINT "DAVID FINNIGAN"

Chapter 3 : Beginning BASIC

79

Type RUN to see the new results. If you successfully changed line
10 by retyping it, the Apple should now display only your name.

Adding Lines

You may add new lines to a program at any time, and in any or-
der. You do not have to enter lines sequentially. The Apple will al-
ways arrange the lines in the proper order when it displays the
program listing or when it executes the program.

In this example, five program lines are entered out of sequence:

]20 PRINT "AS HE FISHED HIS"

]10 PRINT "BOTHER, SAID POOH,"

]40 PRINT "HONEY JAR."

]50 END

]30 PRINT "DISKETTES FROM THE"

However, when the program is listed, the lines are in the right or-
der:

]LIST

 10 PRINT "BOTHER, SAID POOH,"

 20 PRINT "AS HE FISHED HIS"

 30 PRINT "DISKETTES FROM THE"

 40 PRINT "HONEY JAR."

 50 END

Notice that the line numbers are incremented by 10. Allowing this
space in numbering makes inserting additional lines convenient.

Deleting Lines

To delete a line, simply type its number followed by the RETURN
key. This will replace the existing line with a blank which effec-

The New Apple II User’s Guide

80

tively obliterates it. To verify, use the LIST command, and notice
that the line no longer appears, as in this example:

]NEW

]50 PRINT "BLUETS AND GRANOLA BARS"

]60 PRINT "MAKE A"

]70 PRINT "CHEWY"

]80 PRINT "SNACK"

]90 END

First, five new lines are added. Then line 70 is deleted:

]70

Now listing the program will show that line 70 is indeed gone:

]LIST

 50 PRINT "BLUETS AND GRANOLA BA

 RS"

 60 PRINT "MAKE A"

 80 PRINT "SNACK"

 90 END

To efficiently remove a block of lines, use the DEL command, such
as in this continuation of the previous example:

]DEL 60,80

]LIST

 50 PRINT "BLUETS AND GRANOLA BA

 RS"

 90 END

In this example, all line numbers between, and including, 60 to 80
are removed. Even if the range specifies line numbers which do
not exist, BASIC takes no exception.

Chapter 3 : Beginning BASIC

81

About Program Writer

The limitations of the Apple’s small screen and line-editing com-
mands make writing and modifying a large program cumbersome.
Program Writer, written by Alan Bird, and formerly published by
Beagle Bros, is a utility program designed to make the task of BA-
SIC programming easier. Program Writer features an interface that
works like a conventional word processor, allowing automatic line
numbering, full screen scrolling and copy-paste functionality.

Putting Multiple Statements on One Line

Sometimes you may find it convenient to place more than one
statement on a line, such as if you wish to conserve line numbers,
or if the statements are closely related. The one pitfall to this prac-
tice is that editing such a line becomes more burdensome. In Ap-
plesoft and Integer BASIC, the syntax to add additional state-
ments is the same. Use the colon (:) to separate statements, such
as in this example:

]10 PRINT "NOTHING" : PRINT "IS REAL"

]RUN

NOTHING

IS REAL

]

Remember that you only need to type the line number once. Af-
terward, type the desired statement, then a colon, and the next
statement. You may, of course, have more than two statements on
a line, but there are some limits.

In Applesoft, the colon syntax can be used in both immediate and
deferred execution modes. The maximum line length is 255 char-
acters, which will place a limit on how many statements can be in
a single line.

Integer BASIC restricts such syntax to deferred mode only, mean-
ing that you can only combine BASIC statements in your program,

The New Apple II User’s Guide

82

and not when issuing immediate commands. Integer BASIC also
has a stricter limit on the maximum number of statements which
may be placed on a single line. The line limit is around 150 char-
acters, but the exact limit depends on the sort of commands in-
volved. Some experimentation on your part will reveal what these
limits are.

Adding Comments to a Program

Your first few BASIC programs will be short, and it is unlikely that
you will not understand what they are doing. However, long BASIC
programs will almost certainly introduce more complexity. To help
the programmer, comments or remarks may be added to a BASIC
program. Comments should be used to explain what certain lines
of a program are expected to do, or what input should be expected
from the user.

To add a comment, use the REM command:

]30 REM THIS IS A PROGRAM COMMENT

Program comments can appear anywhere and on any line in a
program, but typically they are placed just before the line that
they describe. If you include a REM command as part of a
multiple-statement line, you should add it as the last statement. If
you decide to share your program with other people, they will
likely appreciate it if you include comments, especially if they try
to modify your program. Adding comments will also help you re-
member what different parts of your program do if you come back
to work on the program months or years later.

The Apple does not pay any attention to your comments; when
executing your program, it will skip over them as if they were
never there. Keep this in mind when using the colon to place mul-
tiple statements on one line: be sure that any REM is the last
statement on the line.

Chapter 3 : Beginning BASIC

83

Clearing the Screen

Running your program and using PRINT statements likely made a
lot of text on your screen, not all of which was related. Fortu-
nately, there is an easy way to clean the screen and begin with a
“blank slate,” so to speak. In Applesoft, the HOME command will
clear the screen and return the cursor to the upper-left corner,
known as the home position. Integer BASIC does not have a HOME
command, instead you must use CALL -936, which has the same
effect.

Both HOME and CALL -936 can be used in either immediate
mode, or as part of your program. It’s good to get into the habit of
beginning your program by clearing the screen, since you don’t
know what the user was doing beforehand that may have clut-
tered it.

A final method of clearing the screen is by an Escape sequence.
Press ESCAPE, then type an @ (on the Apple II and II Plus, an @ is
generated by typing SHIFT-P). This too will clear the screen, leaving
just a flashing cursor at top left. The one difference with this
method is that it cannot be used as part of a program.

Automatic Line Numbering

Integer BASIC has a handy feature that when enabled, can auto-
matically number each successive line for you. To enable this fea-
ture, use the AUTO command, such as in this example:

>AUTO 10

When you press RETURN, the Apple will have started the next line
with 10 for you. When you type your statement and press RETURN,
the next line will be numbered 20.

By default, the line numbering interval is 10.If you would like use
a different interval, then you must provide it as a second argu-
ment, like so:

The New Apple II User’s Guide

84

>AUTO 100, 5

In this example, the Apple II will start numbering your program at
line number 100, and will advance by 5 every time you enter a
valid line.

The Apple II will not increment the line number if you enter an in-
valid line, such as one with a syntax error, or a blank line. In-
stead, the Apple will print the same line number again, allowing
you to retype the line.

To stop the Apple from automatically numbering each line, first
press CONTROL-X to cancel the current line. Finally, use the MAN
command to resume manual line numbering.

Saving and Loading Programs

While your first few BASIC programs probably won’t be worth sav-
ing, you will no doubt conceive of others which you do wish to
keep. There are two methods to save a program: on tape, and on
disk.

Saving on Tape

Saving a program to tape is rather old-fashioned, but still works.
You must have a cassette tape recorder properly connected to
your Apple; see Chapter 2 for setup details. When you are ready to
save your program, make sure that you have a cassette tape
loaded in the recorder. Type the following command, but do not
press RETURN:

]SAVE

At the cassette recorder, press the Record and Play buttons. Now
press RETURN on the Apple keyboard. After a few seconds, the Ap-
ple will beep. Then, after a few more seconds, the Apple will beep
again and the BASIC prompt will return. At this point, you may
press Stop on the recorder; your Apple has finished.
It is convenient to use the cassette recorder’s tape counter to
track the positions of multiple programs on a tape.

Chapter 3 : Beginning BASIC

85

Saving on Disk

To save a program on disk, which is faster and more convenient
than tape, you must have first started a Disk Operating System,
DOS or ProDOS. For instructions on this procedure, see Chapter
7. If you load DOS or ProDOS with a BASIC program in memory,
that BASIC program will be destroyed!

Using a disk allows you to file your programs by name. The format
for the SAVE command is similar to that for saving on tape, except
that you must specify a filename, such as in this example:

]SAVE MYPROGRAM

Entering that command will place a file named MYPROGRAM on
your disk containing a copy of your program. The copy of the BA-
SIC program in memory remains unmodified. Depending on what
version of operating system you’re using, the filename may have
some restrictions. Again, take a look at Chapter 7 for the full de-
tails on using the disk.

Be aware: if a file with the same name already exists when you
SAVE your program, it will be overwritten! The Apple will not warn
you that a file already exists, nor will it ask for confirmation to
overwrite the previous file.

Loading from Tape

To load an existing program from tape, first position the cassette
tape to the beginning of your program. If you are unsure of where
your program begins, play back and listen to the tape. When you
hear a steady tone, that marks the beginning of your program.
Stop the tape. Make sure that the cassette tape recorder is prop-
erly attached to your Apple; see Chapter 2 for details.

At the Apple, type in the following, but do not press RETURN:

]LOAD

Press Play on the cassette recorder, then press RETURN on the Ap-
ple keyboard. A few seconds will pass as the Apple listens to the
steady tone marking the beginning of your saved program. After

The New Apple II User’s Guide

86

that, the Apple will beep, and your program will be read into
memory. Finally, if all went well, the Apple will beep again, and
the cursor will reappear. Type RUN to start your program, or LIST
to see if it was loaded correctly.

If you get an error, rewind the tape, adjust the volume control,
and try again. The volume control should be set to around 50-70%
of maximum. It can take a few tries to successfully load a tape.
Once you have successfully loaded a tape, you should not need to
adjust the tape recorder’s volume settings anymore.

Loading from Disk

Loading programs from disk is far quicker and more convenient
than loading from cassette tape. First, you must have started the
disk operating system, either DOS 3.3 or ProDOS. Chances are,
the disk on which your program is stored already has an operat-
ing system on it. For more details on starting DOS, see Chapter 7.

Once DOS is loaded into your Apple, you can use one of two
commands:

]RUN MYPROGRAM

This will load and then run a program named MYPROGRAM from
the disk. Alternatively, if you do not want a program to start run-
ning, say if you want to LIST and edit it, use the following com-
mand:

]LOAD MYPROGRAM

This will load the file named MYPROGRAM into memory, overwrit-
ing any existing BASIC program. There you may LIST or RUN it,
and resume working on it as usual.

If you get a FILE NOT FOUND error, then check your spelling; you
may have mistyped the filename. Alternatively, it could be that the
file does not exist on the disk; you may have inserted the wrong
disk. Finally, if you get a FILE TYPE MISMATCH error, then you
have tried to load a file that is not a BASIC program.

Chapter 3 : Beginning BASIC

87

Use the CATALOG command to get a listing of each file and its file
type present on the disk. Again, see Chapter 7 for full instructions
on these procedures.

Listing Programs on a Disk

All of the files saved on a disk are listed in the disk’s catalog. After
the operating system is loaded, type the following:

]CATALOG

to list the files saved on the disk. ProDOS will allow you to type
CAT instead, which will yield a more compact listing. On a DOS
3.3 disk with more than 18 files the listing will pause to give you
time to read it. Press RETURN to see the rest of the files.

The New Apple II User’s Guide

88

